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The computer implementation of a peptide drug-design strategy has been developed.
The system is named EmPLiCS (Empirical Peptide Ldgand Construction System) accord-
ing to the strategy of the system, which searches for peptdde-ligand structures by refer-
ring to empirical rules that are derived from known protein 3D structures. The system
was tested on several known peptide-protein complexes. The results demonstrated the
ability of this system to detect key residues of peptides that are crucial for interaction
with their specific proteins. The system also showed the ability to detect the main chain
trace of these peptides. Some of the main chain atoms were detected even though the
complete primary structures were not reproduced, suggesting that main chain struc-
ture is important in peptide-protein recognition. The results of the present study dem-
onstrated that the empirical rules-based system can generate significant information for
use in the design of natural peptide drugs.
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Many medical drugs exert their pharmacological effects
through tight binding to proteins or nucleic acids (1-4). The
most important attribute of drug molecules is their recogni-
tion of particular structures of biological macromolecules.
Structure-based drug design is the method of finding and
improving molecular structures that complement the func-
tional sites of target macromolecules based on their three-
dimensional structures (5-7).

Molecules of various chemical natures have been used as
the lead molecules in the reported structure-based design,
including sugars (8), nucleic acids (9,10), and peptides (11).
Among the variety of drug molecules, natural peptides,
which are composed of the twenty biological amino acids,
have considerable advantages compared to others. First,
there is little difficulty in synthesizing designed molecules
because the necessary techniques have been developed (12).
Second, peptide drugs are less toxic. Third, peptide drugs
can be encoded into genes (13), which implies that peptide
drugs may be produced by cellular machineries. The tempo
and place of production can be regulated by the cellular
machineries for gene expression and product localization,
which will work in a built-in drug-delivery system. This is
the most prominent character of natural peptide drugs, be-
cause no other type of molecule can be used in this way.
The structure-based design strategy, which is specifically
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aimed at natural peptide drugs, has significant potential
applications.

Based on the drastically increased number of known pro-
tein 3D structures (14), the targeting of natural peptides
allows the use of a unique approach, namely, purely knowl-
edge-based methods. One use of the database is to analyze
statistically the geometry of amino acid residues to evalu-
ate the stability of peptide-protein complexes. Computer
implementations of this idea have been reported.

For example, the program GEMINI accumulates infor-
mation on the spatial arrangement of residues from the
database, and extrapolates it in order to predict the posi-
tion of ligand residues (15). Later, this idea was improved
upon and implemented in the program X-SITE (16). This
program collects information on the spatial arrangement at
atomic resolution and renders this information into a quan-
titative scoring system in order to evaluate the stability of
interactions. The same method was used for DNA-protein
complexes using known DNA-protein complex structures
from the database (17). The program GROW is also special-
ized for peptide drug design (18). This program uses data-
base-derived rotamers of amino acids to generate struc-
tures of peptides. The programs LUDI and PROJLIGAND
can be also applied for natural peptide design, if the frag-
ment libraries are restricted to that of natural amino acids
(19-21). In a recent study, design of peptide ligand for hu-
man auto-antibody was performed using a neural network
model, which represents an another empirical approach to
drug design. The peptide sequences known to bind to the
target protein were used as a learning set in order to de-
duce new sequences (22). Although these knowledge-based
approaches to drug design and ligand prediction have been
shown to work effectively, the empirical rules have not been
organized into a system that can perform every required
step of de novo design.
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Current rapid expansion of sequence and structure data-
bases of biological macromolecules is prompting the appli-
cation of empirical rules for prediction of structure and
function of the molecules (23-28). By using natural solu-
tions derived from the databases, empirical methods can
avoid massive computations which are necessary for the
methods totally based on the physicochemical principles.
Protein ligand prediction is also an important target of the
empirical approaches. However, the performance of empiri-
cal methods in peptdde ligand prediction has not yet been
fully described. To what extent can a design strategy that is
based totally on empirical rules detect peptdde ligand struc-
tures? We have constructed a computer program that per-
forms peptdde-drug design by exclusively referring to the
statistics from the protein databank. The newly developed
system is called EmPLiCS (Empirical Peptide Ligand Con-
struction System). The algorithm and performance of Em-
PLiCS on several known peptide—protein complexes are re-
ported herein.

MATERIALS AND METHODS

Overview of the EmPLiCS System—A schematic over-
view of EmPLiCS is presented in Fig. 1. The system con-
sists of programs for construction of empirical rules and
programs for peptide design. The empirical rule construc-
tion process requires a set of known protein 3D structures
as input, and generates three sets of rules: empirical pep-
tide-peptdde potential (EP3), empirical retainer representa-
tives (ER2), and empirical fitness function (EF2). The pro-
cess of peptdde design requires a target protein 3D struc-
ture as an input. First, the system performs docking simu-
lation of amino acids to a target site (seed-finding). The

amino acids positioned on the protein (seeds) are used as
scaffolds, upon which other residues are added during the
subsequent design process (peptdde-breeding). The pro-
grams were written in the C language and installed on an
R8000 ONIX workstation (Silicon Graphics).

Empirical Peptide-Peptide Potential—Empirical potential
energy fields were derived from 86 non-redundant protein
3D structures that were determined to a resolution higher
than 2.0 A with a crystallographic iZ-fector better than 20%
using X-ray crystallography. The PDB entries are as follows
(the chain IDs are presented in parentheses): lamp, larb,
last, layh, lbtc, lcdg, lcmb(A), lcox, lcpc(A), lcpc(B), lcse-
(E), lcsh, ldbs, lddt, ldri, lede, lfkf; lgcg, lgdl(O), lgdi,
lgof, lgpr, lhfc, lhml, lhne(E), lhoe, lhsl(A), lhvl(A),
llts(A), llts(D), lmol(A), lnar, lnhp, lnpk, lnscCA), lolb(A),
lomd, loya, lpaz, lpbe, lpcy, lpoc, lrms, lsaKA), lsnc,
ltca, ltfg, lubq, lxyz(A), lycc, 256b(A), 2acu, 2alp, 2ca2,
2cdv, 2cmd, 2cpl, 2cut, 2er7(E), 2fb4(H), 2fcr, 2gst(A), 21al-
(A), 2mnr, 2pia, 2m2, 2sic(I), 2tsc(A), 3dni, 3grs, 3il8, 3mds-
(A), 4enl, 4fdl, 4fxn, 4pep, 4ptd, 4tnc, 5p21, 5rub(A), 5tdm-
(A), 6tmn(E), 7aat(A), 7xia, 8dfr, and 8rsa(A).

The empirical potential field was derived from statistics
of the spatial distribution of atoms in the protein molecules.
This method is similar to that used in the X-SITE program
(16) except for the following differences. In this method,
protein structures are divided into rigid atom groups,
which are called proto-groups. The proto-groups are defined
so that each defines a unique coordinate system. An atom
that has two or more covalent bonds with non-hydrogen
atoms defines a 3D coordinate system. Each proto-group
contains at least one such atom and, as long as the atoms
are not connected with a single covalent bond, a proto-
group contains as many atoms as possible (Table I). If the

Target-protein
structure

86 known protein structures
28 known protein-peptide
complex structures

Empirical rule constrcuction

/empirical Rotamer
Representatives

V ER2

Empirical
Peptide-Peptide Potential]

EP3

impirical \
Fitness Function

EF )

^•/Peptides for next generation

Fig. 1. A schematic overview
of EmPLiCS. The meshed
boxes indicate the three pro-
cesses executed by the system,
namely, empirical rule construc-
tion, seed-finding, and peptdde-
breeding. The open boxes are
operations in the peptdde-breed-
ing process. The three empirical
rules are represented by
meshed round-boxes. The open
round-boxes indicate the input
or output data (atom coordi-
nates of amino acids, peptide, or
proteins). Examples of peptide
model in seed-finding, peptdde-
breeding and final (designed
peptide) stages are presented.
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TABLE I. EP3 and ER' statistics.

Residue No. samples No. rotamers Proto-group definitions

Ala
Arg
Asn
Asp
Cys
Gin
Glu
Gly
His
lie
Leu
Lys
Met
Phe
Ser
Thr
Trp
Tyr
Val
cu-Pro
trans-Pio
Peptide plane
N-terminus
C-terminus

1,866
838

1,004
1,291

286
755

1,154
1,783

446
1,128
1,616
1,195

410
820

1,426
1,293

314
801

1,491
60

917
20,808

81
86

1
63
6
3
3

28
7
1
6
6
4

67
20
6
3
3
6
6
3
1
1

225
1
1

I(c.-cy-q

[N-<C>C], [C^C^-C,], [(q-O^-NJ]
[N-(C>C], [Ca-(Q-C,], [(C.-O^-O^)]
[N-(c>q, [cc-<c),-st)]
[N-(C>C], [^-(C^-C,], [C,-(C)-CJ, [
[N-<c>c], [c^c^c,] , [^-(c^-cj, [(c,-o,;-o j ]
[N-<C>C]
[NKCJ-C], [C^C^CJ, (q-C^-tN^-Q.-NJ)
[N^cj-C], [c.-<q1-cn)], [c^c^c,,)]
[N-ccj-q, [c^c^-cj, [(Crc4,-cj]

VN,,-NJ)

^-cj.cc^-c^-tc-c^-cj)
:]. [Ca-<cp-OT)]

[N-{CJ-C], [(CrO -CJ]
[N^CJ-C], [Ca-(C>C3, (CT-Cli-C,!-[N,,-Cn-CJ-CIj-C]-C^)
[N-(C>C], [C^C^-CJ, (C,-Ct,-C4;-[C,l-C,;-C]-O^
[N-(C>C], [(C,-Cn-Cn)]
(N-C.-[C,-CrCJ)

[(N-C-O)]
[(N>Ca-C]
[Ca-(C-O]-OXT)

Columns: Residue, names of residues; No. samples, total numbers of the residues observed in the sample proteins; No. rotam-
ers, numbers of rotamers defined in ER2 for the residues (combination of representative x'-X6 angles for side chains, or combi-
nation of 4>-<Ji angles for main chain); Proto-group definitions, atomic symbols enclosed in parentheses represent the proto-
group, and those in square brackets are the three atoms that define reference coordinate system of the proto-group.

content of a proto-group is less than three atoms, atoms of
other groups that are directly connected to the group are
used to define the coordinate system.

The process of the potential field is schematically pre-
sented in Fig. 2. Each proto-group in the protein molecules
is superimposed on its reference coordinate system (Step 1
in Fig. 2). Atoms around the proto-groups are categorized
into sixteen types and are called target-atoms (Table II).
The count of the target-atoms is accumulated on a grid sys-
tem, which consists of evenly distributed points at 0.5 A
intervals in a 12 X 12 X 12 A3 box centered at the origin of
the proto-group (Step 2 in Fig. 2).

The observed target-atom frequencies are redistributed
in the grid system (Step 3 in Fig. 2). Suppose fjir) is an
observed frequency of the target-atom i for the proto-group
j at the grid point r, and n0 is the total observed number of
the target-atom for the proto-group. The frequency is modi-
fied as

where a = 0.5 + 50/nu. When the total observed number
(.n^) is small, the large a value creates a featureless distri-
bution reflecting the low reliability of the statistics.

The modified target-atom frequencies at each grid point
are converted into potential energy (Step 4 in Fig. 2).
Assuming the Boltzmann distribution of the atoms around
proto-groups, the potential energy {£) at a position r is
defined as

E = -RT\n\fv(ry(fu(r)))

where (fjir)} is the average of the frequency over the grid

Fig. 2. A scheme of the process of EP° from protein coordi-
nates. Step 1: Target-atoms are transferred into the reference coor-
dinate system of the proto-group. Step 2: The counts of target-atoms
are heaped up on the grid system. Step 3: The observed numbers of
target-atoms are redistributed and normalized. Step 4: The fre-
quency is converted into EP3.

Vol. 128, No. 4,2000

 at Peking U
niversity on O

ctober 1, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


564 H. Ishida et al.

TABLE II. Definition and sample number of target-atoms.
Name Formula No. samples

Main chain

Aliphatic-C

Carbonyl-C

Carbonjd-0
Amide-N

Side chain

\

/
CH-

=0
-NH-

Aliphatic-C -CH, -CHj-^)CH-

Carbonyl-C

Aromatic-C
Carbonyl-O
Carboxyl-O*
Hydroxyl-0
Amino-N
Charged-N*
Aroma tic-Ne

Thiol-S
Sulfur-S
Water-O

C=

=CH-
=0
-o-
-OH
-NH,
-NHa*

-NH-=N-
-SH
- S -

HOH

20,894

20,894

20,808
20,813

42,400

4,204

13,576
1,759
5,044
3,520
1,759
2,952
2,044

286
410

19,017
Columns: Name, name of target-atom; Formula, bonding patterns
of target-atom; No. samples, total number of target-atoms found in
the sample proteins. "Carboxyl-0 is the oxygen atom of Asp and
Glu side chains and C-terminal carboxylate group. tharged-N is
the nitrogen atom of Arg (N,), Lys and N-terminal amino group.
cAromatic-N is the nitrogen atom of Arg (Nt), His and Trp side
chains.

points. The function of potential energy is called EP3 (em-
pirical peptide-peptdde potential).

Two different forms of EP3 were developed, namely, rEP3

and nEP3, which correspond to the potentials for remotely
connected and neighboring residues in primary structure,
respectively. In the process of rEP3, only the atoms that are
separated by more than six residues from the residue to
which the proto-group in consideration belongs are count>
ed. The nEP3 is derived from the atoms that are within six
residues from the proto-group's residue. The rEP3 is used
for energy calculation of inter-molecular interaction, and
the nEP3 is used for intramolecular interaction.

The energy of a peptide-protein complex is calculated as
the sum of the rEP3 and nEP3 values for the atoms in the
fields defined by the peptide and protein structures. EP3

fields of proto-groups are superimposed onto proto-groups
of the protein or peptide molecules. The values from every
proto-group are heaped up on a grid system that is fixed on
the complex structure. The fields are synthesized for the
sixteen target-atoms separately. The total energy of a pep-
tide-protein complex structure ( E J is defined as

where £"„, is the summation of the potentials for peptide
atoms in the rEP3 fields defined by the protein, and E*^ is
the summation of the values for protein atoms in the rEP3

fields defined by the peptide. The EN
rep is the summation of

the values for peptide atoms in the n E P fields defined by
the peptide itself

Empirical Rotamer Representatives—Preference in dihe-
dral angle was also deduced from the 86 protein structures.
A total of 255 favored combinations of d> and 9 angles were
selected for main chain torsion angles. Side chain angles (x)

are treated separately, and up to three representative
values) are selected for each angle. Rotamers of amino acid
residues in the design process are prepared by combining
the representative values (Table I). This dihedral angle
preference is referred to as ER2 (empirical rotamer repre-
sentatives).

Empirical Fitness Function—The process of finding ap-
propriate peptide drugs requires comparisons of stability
among peptide models with a variety of sequences and
lengths. In general, a peptide with more internal degrees of
freedom requires more reduction of enthalpy in the binding
process, because the reduction in conformational entropy is
larger than that of molecules of lower complexity. An em-
pirical fitness function that implicitly includes the confor-
mational entropy is used in this system to normalize the
difference among peptides. In the empirical fitness func-
tion, the internal degree of freedom of a peptide was simply
assumed to be proportional to the number of single bonds
(m) of the molecule, and the energy of peptide-protein com-
plex was normalized as

ôo, = ôm -am-b.

The constants (a and b) of the function were derived from
28 known peptide-protein complex structures (Table IID.
The complex structures are those determined to a resolu-
tion higher than 3.0 A using X-ray crystallography or those
determined by NMR. The EP3 energy ( £ J of the 28
known peptide-protein complexes was calculated, and the
constants (a and b) were obtained by a first-order regres-
sion. The result is shown in Fig. 3. The values for a and b
are determined to be -38.0 and -87.3 (kJ/mol), respectively.
The correlation coefficient between the number of single
covalent bonds and energy was 0.93.

Seed-Finding and Peptide-Breeding Processes—Initial
structures for peptide design process are single amino acids
which are called seeds. Every possible combination of
translation, rotation, and ER2 of amino acid is examined
within a space around a defined target site of protein mole-
cule in order to find the seeds. This process is called seed-
finding. In the subsequent process, the seeds are elongated
into peptides by adding amino acid residues. This process is
called peptdde-breeding. In both processes, terminal groups
in seeds and growing peptides are modeled as amido-N or
carbonyl-C=O, since the unit of amino acid residue in this
system is N-Co(-R)-C=0 (R = side chain) (Fig. 1). Side
chains are composed of the proto-groups that are defined in
Table I. Hydrogen atoms are not included.

Evolutionary strategy is employed to search for peptide
structures; the peptide-breeding process repeats the follow-
ing three steps (Fig. 1).

1) From n peptides in a generation, 2n peptides are pre-
pared for the next generation. They are the ensemble of the
peptides of the current generation and their mutant froms
in equal numbers. The method of mutagenesis for each pep-
tide is randomly selected from the following six operators:
extension/deletion of one residue to/from N- or C-terminals,
side chain replacement of a randomly selected residue by a
randomly selected amino acid, and conformational modifi-
cation (an alteration of a randomly selected dihedral angle).
The rotamer of a residue to be added or replaced is selected
by exhaustively testing ER2 in the EP3 fields.

2) Fitness values are calculated for the 2n peptides. The
fitness value of a peptide is defined as
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F\i) =

The F\i) value is the number of the peptddes i in the next
generation.

3) The top n peptddes out of 2/i are selected for the next
generation according to their F\i) values, and the remain-
ing n are excluded. The nEPVrEP3 ratio of each peptide is
also monitored in this step. When a peptide forms several
intramolecular interactions, it can increase the F\i) value
without interacting with the target protein. Such a self-suf-
ficient peptide is detected by nEFVrEP3 ratio and excluded.

Applying EmPLiCS to Known Complexes—The newly de-
veloped system was tested on the seven following peptide-
protein complex structures (in parenthesis are abbrevia-
tions of the protein name and PDB codes): Salmonella
typhimurium protein methyltransferase CheR (CheR, Ibc5)
(29), PDZ-3 domain from rat synaptdc protein PSD-95 (PDZ
domain, Ibe9) (30), human class I (MHC I, lhhg) (31) and
class II major histocompatibility complexes (MHC II, ldlh)
(32), Src homology 3 domain from Caenorhabiditis elegans
protein SEM-5 (SH3 domain, lsem) (33), human immuno-
deficiency virus 1 protease (HIV1 protease, Thvp) (34), and
yeast nuclear-import factor karyopherin a (Kap a, Ibk6)
(35).

The crystal structures were used for targets of the sys-
tem in order to determine if the system can detect the
structures of known peptide ligands. Two types of seeds
were used in this test. One group was composed of the resi-
dues of the known peptddes from the complex structures
and are called "known seeds." The other group was com-
posed of seeds that were newly sought by seed-finding and
are called "sought seeds." The seed-finding was executed in
a 7.0 x 7.0 x 7.0 A3 box around the Q atoms of known

peptddes. Every combination of translations, rotations and
rotamers (from ER2 data base) of the amino acid was exam-
ined in the rEP3 field synthesized on the protein structure.
The step of translation was 0.6 A in all directions and the
step of spherical polar angle was 15* in the ranges of 0" s <{>
< 180', 0' < (p < 180', and 0' < K <360'. The top 2,000
seeds found in this process were used for clustering analy-
sis. If the root mean square deviation (rmsd) of the corre-
sponding atoms of two seeds was less than 0.8 A, the two
seeds were accommodated into the same cluster. This pro-
cedure was repeated until no further unification occurred.

No. of single covalent bonds

Fig. 3. Plot of E^^ values of the 28 known peptide-protein
complexes with respect to the numbers of single covalent
bonds in the peptides. The line shows the first-order regression of
the data points.

TABLE III. Proteins for EF* deduction.
Protein

Allosteric chorismate mutase
a-Thrombin

cAMP-dependent protein kinase
Class I MHC

Class n MHC
Endothiapepsin
•C-Chymotrypsin
His-hinding protein
IgGl Fab fragment

IgG2A Fab fragment
IgG2A Fv fragment
Immunoglobulin X light chain dimer
L-Asparaginase
Lys, Arg, Om-binding protein
Oligo-peptide binding protein

SH3 domain

Thioredoxin
Rhiiopus pepsin

Code

lcsm(L)
labj
lfph(F)
lfph(I)
lcmk
lhhg(C)
lhhi(C)
lhhj(C)
lhhk(C)
ltmc
lvaa
ldlh(C)
Ier8
2gct
lhsl(D)
2igf
lggi(P)
lifh
liif
lmcb
3eca(E)
llaf
lola
lolc
lcka
lsem(C)
lmdi
3apr

Peptide sequence

W
FPR-CHj
Ace-DFLAEGGGVR-CH,
GDFEEIPEEYLQ
TTYADFIASGRTGRRNAIHD
TLTSCNTSV
GILGFVFTL
ILKEPVHGV
LLFGYPVYV
EVAPPEYHRK
RGYVYQGL
PKYVKQNTLKLAT
HPFHLLVY
UPGAY
H
EEWPHKK
CKRIHIGPG
Ace-DVPDYAS
GATPQDLNTML
Ace-QFHP
D
R
VKPG
KKKA
PPPALPPKK
Ace-PPPVPPRRR
FRFRYVCEGPSHG
PFHF-!p[CH,-NH]-FV

No. atoms

15
30

104
75

157
63
69
70
77
86
68

106
73
29
11
58
68
57
80
41

9
12
28
33
65
56

110
56

No. bonds
3

10
47
34
71
28
29
31
28
36
29
51
27

8
3

27
31
20
36
14
3
5

11
19
22
14
46
20

Columns: protein, name of protein; Code, PDB code. In parenthesis are the chain IDs of peptides; Peptide sequence, amino acid sequences
of the peptide in one letter coda Non-standard atom groups are indicated as follows: CH, (methylene), Ace (acetyl), and U (unknown side
chain); No. atoms, number of non-hydrogen atoms in the peptides; No. bonds, number of single covalent bonds of the peptide.
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Each cluster was represented by the seed that had the best
EP3 value in the cluster. The top 15 cluster-representatives
were submitted for the subsequent peptide-breeding. The
seed-finding was executed for twenty amino acids, and a
total of 300 seeds were prepared for one protein.

The size of population was fixed to at 300 during the pep-
tide-breeding. The nEP/rEP3 ratio was limited to 1.3; pep-
tides that violated this limit were excluded immediately.
One peptide-breeding run consisted of 100 generations, and
a total of five runs were executed for each protein. Accord-
ingly, a total of 1,500 final peptides were obtained for each
target-protein.

Comparison of EmPLiCS-Designed Peptides with Phage-
Display Library Peptides—Peptdde sequences designed for
MHC II with EmPLiCS system were compared with the re-
ported peptide sequences that were screened from phage-
display libraries with the same MHC II molecule (36). Se-
quences of nonapeptide, that correspond to the fragments
from N- to C-terminal anchor sites, were extracted from the
EmPLiCS-designed peptides (top half of the final popula-
tion of sought-seed design) by avoiding redundancy. The se-
quences were aligned with each of the 60 sequences from
the phage-display library without gaps, and the maximum
matches of residues were counted. For a statistical evalua-
tion, the designed-sequences were randomized by conserv-
ing the amino acid compositions, and the same sequence
comparison was repeated 1,000 times to obtain the values
of expected distribution and standard deviation.

Peptide Modeling with Insight IIIDiscover Program—To
evaluate the performance of EmPLiCS, the known peptides
were modeled by using the commercially available soft-
ware, Insight II/Discover release 98.0 (MSI/Ryoka Systems)
installed on an O2 workstation (Silicon Graphics), and the
modeled peptides were compared with the EmPLiCS-
designed peptides.

Known seeds were used for the initial structures, and the
residues of known peptides were added to the seeds one by
one; therefore, the sequences were restricted to that of the
known peptides. The starting conformation of an added res-
idue was arbitrarily determined by avoiding steric hin-
drance, then a stable conformation was sought by mole-
cular-dynamics (MD) simulation. Modeling was continued
until all the residues in the known peptide were modeled,
or the modeling came to an apparent dead-end, that is, all
of the possible conformations of an added residue caused
serious steric hindrance. The coordinates of protein atoms
and the already modeled part of the peptide were fixed dur-
ing MD simulation, except for the amido or carbonyl groups
to which the added residue was connected. Terminals were
modeled as -NHj or -C(=O)H.

The MD simulations were executed at 1,000 K for 10 ps
(1 ps = 10~12 s) in vacuo, and the trajectories were sampled
every 1 ps. Then the sampled structures were annealed at
300 K for 0.1 ps and energy-minimized. The structure with
the lowest energy was used for further extension of resi-
dues. The AMBER force field was used for the simulations
(37). Every known peptide was modeled twice by using dif-
ferent seeds, and the better results were used for compari-
son.

RESULTS AND DISCUSSION

Examples of rEP3—The program system EmPLiCS was

designed to evaluate the stability of peptide-protein com-
plexes based on empirical potential field derived from the
protein databank. The energy for atom pairs that are dis-
tantly or proximally connected in the primary structure is
treated using rEP3 or nEP3, respectively. The former is used
for evaluation of intermolecular (peptide-protein) interac-
tions and the latter is used for intramolecular (peptdde-
peptide) interactions.

An example of the rEP3 field of guanidine proto-group is
shown in Fig. 4a. hi the fields for carbonyl-0 and -C target-
atoms, well-defined minima were observed at the positions
appropriate for H-bonding to the N^,, N^, and Ne atoms of
guanidine. The average distance of minima of carbonyl-0 to
the nitrogen atoms is 3.0 A. The angles of acceptor-associ-
ated atom (carbonyl-C)-acceptor (carbonyl-O)-donor (N^,
N^, and N£) range from 137" to 171'. The average distance
between the minima for carbonyl-O and -C atoms is 1.1 A.
This example typically shows how a combination of rEP3

fields can define the empirically favored geometry of inter-
action.

The rEP3 field of phenyl proto-group for aromatic-C tar-
get-atom is shown in Fig. 4b. Three regions of lower poten-
tial were observed, that were above and below the ring and
around edge of the ring, which seems to reflect the reported
preference of aromatic rings for edge-to-face interactions
(38). Compared to the example of the H-bond, the favored
region of ring-ring interaction is not localized, reflecting
the character of the interaction that is less sensitive to
geometry.

Since r E P was derived from natural protein structures,
an intriguing feature was observed in the field of the Phe
residue. The rEP3 field of phenyl proto-group for hydroxyl-
O target-atom is presented in Fig. 4c Some potential min-
ima were observed near the C{ atom. When the phenol
proto-group of Tyr residue and its field for the same target-
atom are superimposed on the Phe system, the minima for
hydroxyl-O, which may H-bond to the hydroxyl group of
Tyr, appeared to coincide to those observed for Phe under
the same contour levels.

Phe and Tyr are the most frequently interchanging
amino acids in protein evolution, when the substitution
rate is normalized by the observed frequency of amino
acids (39). Phe residues that have a proximal unsaturated
H-bonding partner may have been Tyr residues previously.
Tyr to Phe substitution might have retained the H-bond
partner and the retained groups are observed in the EP3

statistics. Except for this "historical interaction," visual
inspection of rEP3 fields showed that they were principally
generated from a combination of H-bond, electrostatic, Van
der Waals, and hydrophobic interactions.

Examples of nEP3—Since a peptide has several rotamers,
selecting the appropriate rotamer is the most difficult step
of peptide design. The protein databank can be used for
this purpose as a source of adequate peptide fragments.
Although EmPLiCS does not use the peptide structures
directly from the database, instead nEP3 and ER! can per-
form this function. Since the nEP3 is derived by taking only
neighboring residues in the primary structure into account,
nEP3 is dominated by local interactions that are mainly
used to determine the dihedral angles between neighboring
proto-groups.

An example of the nEP3 field of the phenyl proto-group
for main chain aliphatic-C target-atom is shown in Fig. 5a.
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C01 CD1

Fig. 4. Kxamples at contoured rfiP3 field in stereo-views, a: su-
perposition of the rEP3 fields of guanidine proto-group for carbonyl-
0 (red) and carbonyl-C target-atoms (gray). Both of the fields are
contoured at -2.0 kJ/mol level, b: The rEP1 field of phenyl proto-
group for aromatic-C target-atom (gray). The field is contoured at
-1.0 kJ/mol level, c: Superposition of the rEP3 fields of phenyl of Phe
(red) and phenol of Tyr (blue) proto-groups for hydroxyl-0 target-
atom. Both of the fields are contoured at -2.2 kJ/mol level. The tar-
get-atom density at the peaks 1 and 2 (labeled in figure) for Tyr are
higher than the average by 8.1 and 5.0 a, respectively. The same
density for Phe at the two peaks are 4.5 and 4.1 a higher than the
average, respectively.

The two minima in the field indicate the favored position of
the Co atom, showing preferred dihedral angles Csl-C -Cp-
Ca (x

2) of 90* and 270'. An example of the nEP3 field of the
C, proto-group of Arg for aliphatdc-C target-atom is shown
in Fig. 5b. The three minima correspond to the angle CL-C -
C,-NE (x3) of 0*, 120*. and 240".

The fields of Ca proto-group (of Ala) for Ca and main-
chain-0 target-atoms are shown in Fig. 5c. Preference for
regular secondary structures is presented by the fields.
These examples show that the nEP3 field can be used for
detecting favored dihedral angles.

Testing the EmPLiCS on Peptide-Protein Structures—
The EmPLiCS system first searches for seed (single amino

Fig. 5. Examples of contoured nEP* field in stereo-views, a:
The nEP3 field of phenyl proto-group of Phe for aliphatic-C target-
atom. The CJ-GJ bond is perpendicular to the surface of the paper
The field is contoured at -5.1 kJ/mol level, b: The nEP1 field of C,
proto-group of Arg for aliphatic-C target-atom. The CT-C, bond is
perpendicular to the paper. The field is contoured at —7.0 kJ/mol
level, c: The nEP3 field of Co proto-group of Ala for main chain ali-
phatic-C (gray) and carbonyl-0 (red) target-atoma The main chain
atoms for the righthand helix (H), strand (S), type I (Tl), II (T2), and
III (T3) turns are superimposed on the Co proto-group of Ala. Both of
the fields are contoured at —4.0 kJ/mol level.

acid) positions on the target site of protein molecules using
the empirical energy functions introduced above. The sys-
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tem then breeds the seeds into peptides by mimicking the
evolutionary process. These processes were tested on seven
known peptide—protein complexes to see if the system could
detect the peptide ligand structures.

Two different groups of seeds were used in this test. One
of the groups consisted of the residues of peptide found in
the known complex structures (known seeds) and the other

consisted of seeds that were newly sought around the bind-
ing sites by seed-finding (sought seeds). In both cases, the
initial generation was composed of 300 single amino acids,
and resulted in the same number of peptides. The execu-
tion time for one peptide-breeding process ranged from 6 to
10 h.

Progress in the peptide-breeding process is presented in

a i.o

0 20 40 60 80 100
Generation

C 1.0

0.0
0 20 40 60 80 100

Generation

0.0

g 1.0

20 40 60 80 100
Generation

0 20 40 60 80 100
Generation

0.0
100

Fig. 6. Plots of average scores of
peptides during peptide-breeding
with respect to generation num-
ber. In each panel, thin and thick lines
show the progress in breeding from
known and sought seeds, respectively,
and solid and dotted lines correspond
to scores for detection of main chain
trace and sequence (defined in the
text), respectively. Gray-horixontal
lines show the scores of main chain
trace detection of the peptides modeled
by using Insightll/Discover program,
a: CheR. b: PDZ domain, c: MHC I. d:
MHC n. e: SH3 domain, f: HIV1 pro-
tease, g. Larger NLS-binding site of
Kap a. h: Smaller NLS-binding site of
Kap a.
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a

Fig. 7. Views of the complexes of designed peptide (yellow) ing from known seeds was successful. Side chains are shown only if
and the target protein (white surface). The known-peptides are the side chains of designed peptides are identical to those of the
shown in blue. The designed-peptides are the tops in final generation known peptides. a: CheR. b: PDZ domain, c: MHC I. d: MHC II. e:
(Table IV). The peptides were designed from sought seeds, except for SH3 domain, f: HIV1 protease, g. Larger NLS-binding site of Kap a.
that of SH3 domain and smaller sites of Kap a, in which only breed- h: Smaller NLS-binding site of Kap a.
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Fig. 6 along with plots of average scores for the top half of
peptides in each generation with respect to generation
number. The progress was monitored using two criteria:
detection of main chain trace of the known peptides, and
detection of their sequences. The scoring system for detec-
tion of main chain trace is defined as the number of de-
signed peptide residues that have an rmsd (of main chain
N, Ca, and C atoms) of less than 1.0 A from the known pep-
tide, divided by the number of residues in the known pep-
tide. The score for detection of sequence is the number of
designed residues that satisfy the above condition and that
have a side chain that is identical to the known peptide,
divided by the number of residues in the known peptide.

The plots show that the known seeds generally resulted
in an average score better than those obtained from sought
seeds (compare thin and thick plots in Fig. 6). Accuracy in
seed structure is essential for peptdde-breeding results. This
is clear in the cases of SH3 domain and smaller sites of
Kap a (Fig. 6, e and h), in which the known seeds have
grown to peptides that are similar to the known peptides,
to a certain extent, while the breedings from sought seeds
have completely failed.

Main chain trace of the known peptides was efficiently
detected (thin-solid plots in Fig. 6 and stick-models in Fig.
7). More than 60% of the main chain trace of the known
peptides was reproduced when the peptides were bred from

known seeds, except for the cases of MHC I (Fig. 6c) and
SH3 domain (Fig. 6e). Although the results from sought
seeds are generally worse than those from known seeds,
comparable results for CheR, PDZ domain and MHC II
were given by both seed types (compare thick-solid and
thin-solid lines in Fig. 6, a, b, and d).

Compared to the efficiency for main chain trace detec-
tion, however, detection of amino acid sequence of peptides
was less efficient (compare solid and broken plots in Fig. 6).
This is apparent from the fact that no case snowed a signif-
icant increase in the score for the sequence during breeding
from known seeds (thin-broken lines in Fig. 6). Each of the
initial scores was equal to one.correct side chain per pep-
tide, because each residue from a known peptide was used
for the seeds, hi the tests from sought seeds, the score of
the sequence increased slightly, except for the cases of Kap
a and SH3 domain (thick-broken lines in Fig. 6). However,
the final scores are equal to or less than the initial scores
from known seeds, which indicates that each designed pep-
tide has only one correct side chain on average. The pep-
tides obtained from the final populations as the top (which
has the highest E^ value) or the best (which is the closest
to the known peptide) peptide are shown in Table IV and
Fig. 7. The top peptides contain up to two correct side
chains, and the best peptides have up to four correct side
chains, indicating that a complete set of correct side chains

TABLE IV. Summary of peptide-breeding tests.
Protein

Known peptide*
Designed peptideb

Top from known seed
Best from known seed
Top from sought seed
Best from sought seed

Cluster analysis of designed residues'
Detected residues
Source of seeds
Total number of clusters
Trace detection
Sequence detection

CheR

NWETF

TPDLWI IW
AALLWEVM

VWJWEFEFSW
GVWVEWYAW

. WE. W
Sought
18
6
2

PDZ domain

KQTSV

VVVYDWPITTF
LTYIWKTTH
WVFQFS~TTLH

E W K T T F V '

. . TTL
Sought
28
17
1

MHC I

T L T S CNTSV

DLWLIPWP
TLSNPW
WPTGYPWDD
T LRWVAW

. L
Sought
18
5
1

MHC II

PKYVKQNTLKLAT

EWTWVCI YNI Y LAWP
EWTWVCI ^NI Y LAWP

WSWI FI I FGFTKFQK

p KFVYEGETWLDP

P . F V. E. . . . L. .
Sought
38
35
3

•Sequence of peptides co-crystalized with the proteins. The residues in boldface letters are consensus sites. The residues indicated by aster-
isks were used for the seeds in peptide modeling with Insightll/Discover program. ""Examples of designed peptides. Tops have the highest
fitness values in final population. Bests are closest to the known peptide. Known or sought seed indicates the category of seeds from which
the peptides have been designed. The underlined residues are dose to the corresponding known residues (rmsdlC, C., and N) < 1.0 A). The
residues in boldface letters are identical to that of the known residues. 'Results of cluster analysis. Items: Detected residues, the consensus
side chains that are detected by the system; Source, category of seeds from which the presented results were obtained; No. clusters, number
of designed-residue clusters; Trace detection, the numbers of clusters that are dose to the known-residues (rmsdIC, C., and N) < 1.0 A); Se-
quence detection, the number of dusters that are dose to the known residues and have identical side chains to the known residues.

TABLE IV. Summary of peptide-breeding tests (continued).
Protein

Known peptide
Designed peptide

Top from known seed
Best from known seed
Top from sought seed
Best from sought seed

Cluster analysis of designed residues
Detected residues
Source of seeds
Total number of dusters
Trace detection
Sequence detection

SH3 domain

PPPVPPR

IPVYP
IPPLP

PELVPP

PPP. PP.
Known
15
11
5

HTV1 protease

SLNFPI V

VYWIFVFYLI YP
DLYWI FI I VQP

LVI FYI I IDT"YSVYAW
TYYWftFCDWLVKWP

. . . N F . I .
Sought
44
12
3

Kap a larger site

KKKRKV

NWYTAP KATKT
IDKKRQVL

WYVYIVY
GFVFI HC

. K. . KV
Known
21
11
3

Kap a smaller site

AKKAA

WKFPWDW
AWKFAPK
AHPHFI

Known
12
3
0
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was not detected in the peptide-breeding process.
The difficulty of sequence detection might be due to a

limit, in the searchable sequence space. The maximum vari-
ety of peptides (combinations of sequence and rotamer) that
can be tested in one peptide-breeding run is in the order of
104. This number is roughly equal to the complete sequence
variety of tripeptide (203 = 0.8 X 10*). When rotamer varia-
tion is taken into account, this number is reduced by -102-
fold. Apparently, only an extremely limited area in se-
quence-conformation space can be sought in peptide-breed-
ing.

Key Residue Detection in Pzptide-Breeding—The diffi-
culty of sequence detection prompted an elaborate analysis
in order to derive significant sequence information from the
designed peptddes. Accordingly, the residues of the designed
peptides were subjected to a clustering analysis to find par-
ticular residues that appeared frequently in the final popu-
lation.

The designed peptides from final generations were
divided into residues, and the residues that showed an
rmsd of main chain atoms (N, Ca, and C) of less than 1.0 A
and had the same side chain were combined into the same
cluster. Clusters composed of more than 150 members (10%
of the maximum 1,500) were selected and compared with
the consensus sequence of the known-peptides. From 13 to
44 clusters were found for the proteins as a result of the
clustering analysis (Table IV). The comparison showed that
key residues of the peptdde-protein interaction were indeed
detected in the peptide-breeding process. The following dis-
cussion will be based on the designed peptides from sought
seeds, unless otherwise mentioned.

CheR binds to the C-terminal peptdde of the chemotaxic
receptor protein. The consensus sequence of the receptor's
termini is W/FXXF/- (29), which confers the two key resi-
dues in this interaction. Among the 18 clusters of residues
from the designed-peptide, a cluster of Trp designed resi-
dues was found close to the N-terminal consensus Trp of
the known peptdde (Table IV). Another cluster of Trp, which
is similar to the C-terminal consensus Phe, was also found.

PDZ domain binds to the C-terminal peptide of proteins
that have consensus sequence S/TXV/L (30). At the Ser/Thr
consensus site, a cluster of Thr residues was found. At the
C-terminal consensus Val/Leu position, a cluster of Leu res-
idues was found.

HTV1 protease processes viral polypeptide, and prefers
Phe/Leu at the N-terminal side and Pro at the C-terminal
side to the scissile bond (34). A cluster of Phe residues was
found at the consensus Phe position. However, no cluster
was found at the C-terminal Pro site.

MHC I and II molecules bind to a variety of antigen pep-
tides in order to present these molecules to T-cell receptors.
Two anchor residues of the peptide are known to flank the
sequence that is to be presented (31, 32). For MHC II, the
N- and C-terminal anchors are known to be Tyr and Leu,
respectively. A cluster of Phe, similar to the consensus Tyr,
was found at the N-terminal anchor site, and a cluster of
Leu was found at the C-terminal anchor site. Although a
cluster of Leu residues was found in the position of the N-
terminal anchor Leu/He of MHC I, no cluster for the C-ter-
minal anchor Val/Leu was observed because a majority of
the designed peptides did not reach this position.

Sequences of peptide have been reported that were
screened from phage-display libraries with the same MHC

II molecule used in this study (36). The 60 nonapeptide se-
quences from the screened library were compared with
non-redundant 163 nonapeptdde sequences designed with
EmPLiCS from sought seeds. As the result, about 13% (22
of total 163 peptides) of designed peptides showed maxi-
mum 4 matches in 9 residues (Fig. 8a). The frequency is
higher than the expected value by 7.8 standard deviations.
The detected residues are mainly localized to the positions
1, 4, and 9 of the sequences (Fig. 8b); these positions are
known to define the specific motif of the MHC H-binding
peptides (40). Since the majority of designed peptides have
a main chain structure close to that of the known peptide
(Fig. 7d), most of the residue clusters can be assigned to
one of the sequence positions. Among the 25 residue clus-
ters belonging to the main chain trace, 18 were amino acids
that have been found at the corresponding positions of the
peptides from the screened library (Fig. 8c). The compari-
son shows that the designed sequences are significantly
inclined to that of the high-affinity peptides of MHC II mol-
ecule, and the key residues are detected more efficiently
than others.

No consensus site for SH3 domain or Kap a was found
among the peptides that were designed from sought seeds.

Position 123456789

•a

Phage-
display
library

FSAIRNRIL
FHKVYRGLL
FMRLGGGHL

Position

Clusters

No. identical residues

123456789
WVFITFCWT
FIWVGVAYL
SYL EP

FFAIVECWL
FLAIYECWL
FLAIYETWL
FVAIFECWL
FVAIFECYL
FVAIFEHWL
FVAIFETWL

EmPLiCS. FVAIFLCWL
designed FVAIFMTWL

FVAIGECWL
FVAIGLCWL
FVAIHECWL
FVAIMECWL
FVAIVECWL
FVAIWECWL
FVAIWLCWL
FVAIYECWL
FVAIYLCWL
FVAIYLTWL
FVAIVEVWL
FVAVYECWL
FVYLGETWL

Fig. 8. Comparisons of the EmPLiCS-designed peptides for
MHC II with the peptides screened from phage-display li-
braries, a: Histogram of fractional frequency of the designed pep-
tides against the maximum number of identical residues with the
peptides from the screened library. The filled bars show the frequen-
cies of EmPLiCS-designed peptides. The hatched bars with error
handle show the distribution of randomized peptides. b: Sequences
of peptide from the screened library and the EmPLiCS-designed
peptide that show 4/9 identity with the library peptides. Identical
residues are shown in boldface letters, c: The residue clusters that
belong to the major main chain trace of the designed-peptddes. The
underlined clusters were observed at the corresponding sites of the
library peptides, and those in boldface letters were observed in 25%
or more of the library peptides.
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However, the system found consensus sites in the clusters
that were designed from known seeds. SH3 domain is an
adaptor molecule in the signal transduction pathway, and
binds proline-rich peptide with consensus PXXPXR (33).
Pro clusters of designed residues were found at the first
and the second consensus Pro sites (Table IV). The residues
that were directly inherited from the known seeds were
excluded in this analysis in order to guarantee that the two
sites were detected in the course of breeding.

Kap a is a carrier protein that binds to the nuclear local-
ization signal (NLS). The NLS has several positively
charged residues, although no strict consensus sequence
has been observed (35). In the larger site of the protein, two
clusters of Lys were detected (Table IV), although no posi-
tively charged residues were found for the smaller site even
in the peptides from known seeds.

The results showed that many of the key residues were
detected in peptide-breeding without detecting a complete
sequence of the specific peptide. This implies that some of
the key residues can be recognized out of the sequence con-
text. This may be because the most of the known peptides
bind to the proteins in extended conformation (Fig. 7). An
extended conformation reduces the intrapeptide interac-
tion, and consequently reduces interdependency among the
residues. In this situation, each of the key residues would
be detected separately, because a peptide that has only one
correct side chain might be selected over others. The results
show that the designed peptides can be used to predict
some key residues for binding to proteins.

Main Chain Trace Detection in Peptide Breeding—As
already mentioned, the main chain trace of the known pep-
tides was successfully detected even though complete se-
quences of the peptide were not reproduced (Figs. 6 and 7).
This is partly because interactions through main chain
atoms are extensively used in the proteins for peptide bind-
ing. Among a total of 68 H-bonds that are formed between
proteins and peptides in crystal structures of the seven
complexes used for this test, 52 (77% of total) were found to
involve main chain atoms of the peptides. The largest frac-
tion of the bonds, 36 (53% of total), are formed between a
protein's side chain and a peptdde's main chain. This was
unexpected, because the main chain atoms of peptide were
not able to be used directly to discriminate between specific
and non-specific peptides.

Main chain atoms would be, however, indirectly used for
specificity, because the main chain of a peptide can take a
particular conformation only when its side chains do not
hinder the conformation. There might be an analogy of the
direct and indirect readout strategies in DNA-protein
interaction in peptdde-protein interaction (41—43). The indi-
rect readout is a manner of recognition of DNA sequence
with a sparse direct contact between bases and the protein
molecule. The specificity is thought to be generated from a
difference in free-energy cost for the change in DNA struc-
ture among different nucleotide sequences.

It is possible that some peptdde-binding proteins cast
peptides into a specific main chain conformation and
observe how well the side chains of peptides fit into the spe-
cific main chain conformation. Eighteen out of the 28 sam-
ple peptides of EF2 (Table III) form more than two-thirds of
the total number of H-bonds through their main chain
atoms, and only 6 of these form the majority of H-bonds
through side chain atoms, suggesting that recognition

through peptdde's main chain is a widely accepted strategy
for peptdde-protein interaction. Since the strategy requires
extensive interaction of the main chain, the main chain
trace might be readily detected for such proteins.

The results of the present study suggest that when a
similar main chain trace is frequently observed among de-
signed peptddes, the trace might, be a requirement of pep-
tide-binding protein, even if the side chains of the peptides
are found to be varied among these peptides. In addition,
the newly developed system can be used for predicting the
framework of interaction between proteins and their spe-
cific peptdde ligands.

Significance of the Performance of EmPLiCS—Known
peptides were also modeled by using Insightll/Discover
program to evaluate the results from EmPLdCS system.
The modeling was performed as detailed in the "MATERI-
ALS AND METHODS" section. Each peptide was modeled
twice from two different known seeds, indicated by aster-
isks in Table IV, and the better scores of main chain trace
detection are shown in Fig. 6 in comparison with the scores
of EmPIiCS-designed peptides.

The final scores of main chain trace detection of
EmPLiCS-designed peptides (known seed design, thin-solid
plots in Fig. 6) are always equal to or better than that of
the Insightll/Discover-designed peptides (gray-horizontal
lines in Fig. 6). It should be emphasized that even if the
peptides were modeled from sought seeds, EmPLiCS show-
ed a comparative performance in more than half of the
cases, namely, CheR, PDZ domain, MHC II, HIV1 protease,
and larger NLS-binding site of Kap a (compare thick-solid
plots and gray-horizontal lines in Fig. 6, a, b, d, f, and g).
Considering the complete sequences were given to In-
sightll/Discover modeling, while no sequence information
was given to EmPLdCS, the performance of EmPLdCS was
significantly better. The result shows that the main chain
trace of a peptide ligand can not be easily detected even if
the peptide-bound structure of protein and the sequence of
peptide are known, and that the usage of the empirical
rules made a significant, improvement in detection effi-
ciency.

Conclusion—The performance of the empirical peptide-
ligand prediction system, EmPLdCS, was described. The
performance of the system on several known peptdde-pro-
tein complexes can be summarized into three points that
suggest applications and potential directions for further
improvement of the system. First, accuracy in the initial
structure of peptides (seeds) is the most critical for design.
It suggests finer steps in translation, rotation and rotamers
in the seed-finding process, even though this will require
more computational time Second, sequence detection is
rather inefficient, possibly due to the larger sequence space,
compared to that which is scannable using the system.
Nonetheless, the system detected some key residues ac-
cording to the cluster analysis of the designed residues.
Because residue clusters are frequently found on a continu-
ous main chain trace, the clusters can be assigned to one of
the sequence positions. This information might be used for
experimental methods, such as combinatorial synthesis, in
which the positional information helps to reduce the size of
the library (44). Third, the system detected the main chain
trace without reproducing complete sequences of specific
peptides. The information on the preferred main chain
structures can be used as a scaffold for further improve-
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ment of designed peptides. This suggests a strategy in
which the system is scheduled to seek for the appropriate
main chain trace first, and side chain structures are exam-
ined after the main chain structures are fixed. The infor-
mation of main chain trace can be used to deduce the
residues of protein that interact with peptide ligand. Fur-
thermore, the ability of main chain trace detection might be
used in designing or predicting protein-protein interac-
tions, which is also the important target of empirical meth-
ods in structural genomics.

This work was done at the computer-aided design facility of the
Venture Business Laboratory of Nagoya University
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